27 research outputs found

    PC-SNN: Supervised Learning with Local Hebbian Synaptic Plasticity based on Predictive Coding in Spiking Neural Networks

    Full text link
    Deemed as the third generation of neural networks, the event-driven Spiking Neural Networks(SNNs) combined with bio-plausible local learning rules make it promising to build low-power, neuromorphic hardware for SNNs. However, because of the non-linearity and discrete property of spiking neural networks, the training of SNN remains difficult and is still under discussion. Originating from gradient descent, backprop has achieved stunning success in multi-layer SNNs. Nevertheless, it is assumed to lack biological plausibility, while consuming relatively high computational resources. In this paper, we propose a novel learning algorithm inspired by predictive coding theory and show that it can perform supervised learning fully autonomously and successfully as the backprop, utilizing only local Hebbian plasticity. Furthermore, this method achieves a favorable performance compared to the state-of-the-art multi-layer SNNs: test accuracy of 99.25% for the Caltech Face/Motorbike dataset, 84.25% for the ETH-80 dataset, 98.1% for the MNIST dataset and 98.5% for the neuromorphic dataset: N-MNIST. Furthermore, our work provides a new perspective on how supervised learning algorithms are directly implemented in spiking neural circuitry, which may give some new insights into neuromorphological calculation in neuroscience.Comment: 15 pages, 11fig

    Neural Categorical Priors for Physics-Based Character Control

    Full text link
    Recent advances in learning reusable motion priors have demonstrated their effectiveness in generating naturalistic behaviors. In this paper, we propose a new learning framework in this paradigm for controlling physics-based characters with significantly improved motion quality and diversity over existing state-of-the-art methods. The proposed method uses reinforcement learning (RL) to initially track and imitate life-like movements from unstructured motion clips using the discrete information bottleneck, as adopted in the Vector Quantized Variational AutoEncoder (VQ-VAE). This structure compresses the most relevant information from the motion clips into a compact yet informative latent space, i.e., a discrete space over vector quantized codes. By sampling codes in the space from a trained categorical prior distribution, high-quality life-like behaviors can be generated, similar to the usage of VQ-VAE in computer vision. Although this prior distribution can be trained with the supervision of the encoder's output, it follows the original motion clip distribution in the dataset and could lead to imbalanced behaviors in our setting. To address the issue, we further propose a technique named prior shifting to adjust the prior distribution using curiosity-driven RL. The outcome distribution is demonstrated to offer sufficient behavioral diversity and significantly facilitates upper-level policy learning for downstream tasks. We conduct comprehensive experiments using humanoid characters on two challenging downstream tasks, sword-shield striking and two-player boxing game. Our results demonstrate that the proposed framework is capable of controlling the character to perform considerably high-quality movements in terms of behavioral strategies, diversity, and realism. Videos, codes, and data are available at https://tencent-roboticsx.github.io/NCP/

    JK5G postbiotics attenuate immune-related adverse events in NSCLC patients by regulating gut microbiota: a randomized controlled trial in China

    Get PDF
    ScopeThis study aimed to evaluate the effects of JK5G postbiotics to regulate imbalanced gut microbiota and its impacts on the efficacy and incidence rate of immune-related adverse events (irAEs) in non-small-cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs).MethodsThis randomized, double-blind, placebo-controlled trial was conducted in China and included non-squamous or squamous NSCLC patients without EGFR, ROS1, and ALK alteration, treatment-naive, and stage IIIb-IV. Patients were randomly (1:1) divided into two groups to receive four cycles (three weeks for each cycle) of programmed cell death-1 (PD-1) plus chemotherapy plus placebo (control group, n = 30) or to receive PD-1 plus chemotherapy plus JK5G postbiotics (JK5G group, n = 30). The primary endpoint was objective response rate. The secondary endpoints were quality of life (QoL), adverse effects, and the 16S DNA sequencing of gut microbiota, blood inflammatory cytokines, and lymphocyte subsets. This study was registered at www.chictr.org.cn (ChiCTR2200064690).ResultsSixty patients were enrolled. The objective response rate was 36.67% (11/30) in the control group and 50.00% (15/30) in the JK5G group (p = 0.297). The JK5G group had better QoL and nutritional levels, as well as lower depression symptoms than the control group (all p < 0.05). Moreover, the JK5G group had a lower incidence of anemia (63.33% vs. 13.33%, p < 0.001), decreased lymphocyte count (20.00% vs. 0%, p = 0.010), decreased appetite (53.33% vs. 16.67%, p = 0.003), nausea (33.33% vs. 6.67%, p = 0.010), and asthenia (30.00% vs. 6.67%, p = 0.017) than the control group. Moreover, JK5G attenuated gut microbiota imbalance, accompanied by increased Faecalibacterium, Ruminococcaceae, and fecal butyrate concentration, and diminished Escherichia-Shigella. Furthermore, JK5G administration significantly decreased the levels of pro-inflammatory markers, including TNF-α, IL-2, and C-reactive protein (CRP) (all p < 0.05). Significant increases in CD3+CD4+ T cells and CD4/CD8 ratio were observed in the peripheral blood of JK5G group patients (all p < 0.05). The enterotype data showed that patients were clustered into Blautia (E1) and Escherichia-Shigella (E2) enterotypes, and JK5G postbiotics intervention might be related to enterotype modulations.ConclusionOur current findings indicated that JK5G postbiotics might attenuate irAEs, and enhance the QoL and nutrition levels of advanced NSCLC patients who received ICIs. JK5G postbiotics could also improve the gut microbiota structures and ameliorate the tumor microenvironment and inflammation.Clinical trial registrationwww.chictr.org.cn, identifier ChiCTR2200064690

    Evaluation of Stability and Biocompatibility of Chitosan/Sodium Tripolyphosphate and Chitosan/Flaxseed Gum Composite Nanoparticles Loaded with Bighead Carp Peptides

    Get PDF
    Chitosan nanoparticle is becoming an excellent carrier for the delivery of bioactive components due to the advantages of simple preparation, low cost and high biocompatibility. Previous studies have shown that chitosan/sodium tripolyphosphate (CS/TPP) and chitosan/flaxseed gum (CS/FG) nanoparticles loaded with bighead carp peptides (BCP) have the advantages of small particle size, high encapsulation rate and significant slow-release effect. This study explored the effects of ionic strength, pH, simulated digestion and storage time on the preparation of chitosan/sodium tripolyphosphate (CS/TPP-BCP) and chitosan/flaxseed gum (CS/FG-BCP) nanoparticles, and evaluated the extracellular lactate dehydrogenase content and antioxidant capacity in vivo of Caco-2 cells treated with the chitosan nanoparticles and their cellular uptake. The results showed that the two kinds of chitosan nanoparticles were stable under acidic conditions and sensitive to a solution with opposite charges. The stability of the nanoparticles loaded with bighead peptides was higher than that of free peptides and both nanoparticles showed higher biocompatibility and cell uptake

    Research on Multifractal Characteristics of Vehicle Driving Cycles

    No full text
    Vehicle driving cycles have complex characteristics, but there are few publicly reported methods for their quantitative characterization. This paper innovatively investigates their multifractal characteristics using the fractal theory to characterize their complex properties, laying the foundation for applications such as vehicle driving cycle feature identification, vehicle energy management strategies (EMS), and so on. To explore the scale-invariance of the vehicle driving cycles, the four vehicle driving cycles were analyzed using the Multifractal Detrended Fluctuation Analysis (MF-DFA) method, three of which are standard vehicle test cycles: the New European Driving Cycle (NEDC), the World-wide harmonized Light-duty Test Cycle (WLTC) and the China Light-duty Vehicle Test Cycle for Passenger Car (CLTC-P), and the other is the Urban Road Real Driving Cycle (URRDC), which was obtained by analyzing and processing vehicle driving data collected in actual urban driving conditions. The fluctuation functions, the generalized Hurst exponents, the mass exponent spectra, the multifractal singularity spectra, and the multifractal characteristic parameters were calculated to verify the multifractal characteristics, and to quantify the fluctuation singularities of different driving cycles as the time series. The results show that the fluctuations of all four driving cycles have long-range anticorrelations and exhibit significant multifractal characteristics. The results can provide a basis for the analysis of the complexity of the vehicle driving cycles

    Theoretical analysis for self-sharpening penetration of tungsten high-entropy alloy into steel target with elevated impact velocities

    No full text
    The "self-sharpening" effect has been observed experimentally in the penetration of tungsten high-entropy alloy (WHEA) into steel targets in previous study. From the microscopic observation of the residual WHEA long-rod projectile (LRP), the multiphase structure at micro-scale of WHEA is the key effects on self-sharpening penetration process. In order to describe the distinctive penetration behavior, the interaction between micro phases is introduced to modify the hydrodynamic penetration model. The yield strengths of WHEA phases are determined based on the solid solution strengthening methods. Combined with the elbow-streamline model, the self-sharpening mechanism is revealed in view of the multi-phase flow dynamics and the flow field in the deformation area of the LRP nose is characterized to depict the shear layer evolution and the shape of the LRP's nose as well as the determination of the penetration channel. The self-sharpening coefficient considering the reduction of nose radius is proposed and introduced into the penetration model to calculate the depth of penetration and the penetration channel. Results show that the multi-phase interaction at the microscopic level contributes to the inhomogeneous distribution of the WHEA phases. The shear layer evolution separates part of the LRP material from the nose and makes the nose radius decrease more quickly. It is also the reason that WHEA LRPs have a pointed nose compared with the mushroom nose of WHA heavy alloy (WHA) LRPs. The calculated results agree well with the corresponding experimental data of WHA and WHEA LRPs penetrating into semi-infinite medium carbon steel targets with elevated impact velocities

    Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis

    No full text
    The control of early inflammatory reactions and recruitment of progenitor cells are critical for subsequent tissue repair and regeneration after biomaterial implantation. The aim of this study was to design a multi-functional biomaterial with a controlled drug delivery system to create an optimal local environment for early osteogenesis. Here, the anti-inflammatory cytokine IL-4 and pro-osteogenic RGD peptide were assembled layer-by-layer on TiO2 nanotubes. A poly(dopamine) (DOP) coating was employed onto TiO2 nanotubes (T/DOP) to functionalized with IL-4 (T/DOP-IL4). Then, a carboxymethyl chitosan hydrogel layer (CG) was generated on T/DOP-IL4 to control IL-4 release and RGD peptide immobilization. Cell co-culture models were applied to study macrophage polarization on various material surfaces and the regulation of mesenchymal stromal cell (MSC) osteogenic differentiation. Our data suggest that T/DOP-IL4/CG-RGD surfaces developed in this study are multi-functional, and can not only drive phenotypic changes in macrophages (switching to anti-inflammatory M2 phenotype), resulting in the production of reparative cytokines such as IL-10, but also enhance MSC differentiation related to the activation of BMP/SMAD/RUNX2 signaling. This study further confirmed that the introduction of anti-inflammatory cytokine (IL-4) and cell adhesive motif (RGD) onto Ti substrate can work synergistically to generate a more favorable early-stage osteo-immune environment with superior osteogenic properties, thus representing a potential ideal surface for the generation of bone biomaterials.</p

    Preparation of Coupling Catalyst HamZIF-90@Pd@CALB with Tunable Hollow Structure for Efficient Dynamic Kinetic Resolution of 1-Phenylethylamine

    No full text
    Chiral amines are essential components for many pharmaceuticals and agrochemicals. However, the difficulty in obtaining enantiomerically pure amines limits their application. In this study, hollow amorphous ZIF-90 (HamZIF-90) materials were prepared by template engraving, and chemical–enzyme coupling catalysts (HamZIF-90@Pd@CALB) were constructed for the chiral resolution of 1-phenylethylamine. Different from conventional materials, HamZIF-90 had tunable hollow structures by altering its central node zinc ion concentrations, and the embedded hydrogel template gave it more pore structures, which facilitated the loading of enzyme molecules and Pd nanoparticles (NPs). The establishment of the coupling catalysts shortened the mass transfer distance of the reactant molecules between the metal nanoparticles and the enzyme catalyst in the dynamic kinetic resolution (DKR) reaction, resulting in 98% conversion of 1-phenylethylamine and 93% selectivity of Sel.R-amide. The proposal of this idea provided a good idea for future tailor-made MOFs loaded with chemical and enzyme coupled catalyst

    Preparation of Coupling Catalyst HamZIF-90@Pd@CALB with Tunable Hollow Structure for Efficient Dynamic Kinetic Resolution of 1-Phenylethylamine

    No full text
    Chiral amines are essential components for many pharmaceuticals and agrochemicals. However, the difficulty in obtaining enantiomerically pure amines limits their application. In this study, hollow amorphous ZIF-90 (HamZIF-90) materials were prepared by template engraving, and chemical&ndash;enzyme coupling catalysts (HamZIF-90@Pd@CALB) were constructed for the chiral resolution of 1-phenylethylamine. Different from conventional materials, HamZIF-90 had tunable hollow structures by altering its central node zinc ion concentrations, and the embedded hydrogel template gave it more pore structures, which facilitated the loading of enzyme molecules and Pd nanoparticles (NPs). The establishment of the coupling catalysts shortened the mass transfer distance of the reactant molecules between the metal nanoparticles and the enzyme catalyst in the dynamic kinetic resolution (DKR) reaction, resulting in 98% conversion of 1-phenylethylamine and 93% selectivity of Sel.R-amide. The proposal of this idea provided a good idea for future tailor-made MOFs loaded with chemical and enzyme coupled catalyst

    Graphene oxide coated titanium surfaces with osteoimmunomodulatory role to enhance osteogenesis

    No full text
    Graphene oxide (GO) and its derivatives are currently being explored for the modification of bone biomaterials. However, the effect of GO coatings on immunoregulation and subsequent impacts on osteogenesis are not known. In this study, GO was coated on pure titanium using dopamine. GO-coated titanium (Ti-GO) surfaces exhibited good biocompatibility, with the ability to stimulate the expression of osteogenic genes, and extracellular matrix mineralization in human mesenchymal stromal cells (hMSCs). Interestingly, it was found that GO-coated surfaces could manipulate the polarization of macrophages and expression of inflammatory cytokines via the Toll-like receptor pathway. Under physiological conditions, Ti-GO activated macrophages and induced mild inflammation and a pro-osteogenic environment, characterized by a slight increase in the levels of proinflammatory cytokines, as well as increased expression of the TGF-β1 and oncostatin M genes. In an environment mimicking acute inflammatory conditions, Ti-GO attenuated inflammatory responses, as shown by the downregulation of proinflammatory cytokines. Conditioned medium collected from macrophages stimulated by Ti-GO played a significant stimulatory role in the osteogenic differentiation of hMSCs. In summary, GO-coated surfaces displayed beneficial immunomodulatory effects in osteogenesis, indicating that GO could be a potential substance for the modification of bone scaffolds and implants.</p
    corecore